超过人类决策能力的机器学习模型的出现,在复杂的领域中启动了一种运动,以构建与人类互动的AI系统。许多构建基础对于这项活动至关重要,中心是人类行为的算法表征。尽管现有的大部分工作都集中在人类的总体行为上,但一个重要的远程目标是开发专门针对个人人并可以在其中区分的行为模型。为了使这个过程形式化,我们研究了行为风格的问题,其中任务是仅从决策中确定决策者。我们提出了一种基于变压器的方法,用于在国际象棋的背景下进行行为风格测量法,其中有人试图识别玩一组游戏的玩家。我们的方法在几个弹药的分类框架中运行,并且可以在只有100个标签游戏的情况下正确地从成千上万的候选玩家中识别出98%精度的候选人。即使接受业余比赛的训练,我们的方法还是对大师级玩家的分布样本的概括,尽管业余球员和世界一流的球员之间存在巨大差异。最后,我们更广泛地考虑了我们所产生的嵌入有关国际象棋中人类风格的揭示的内容,以及在行为数据中识别个人的强大方法的潜在伦理含义。
translated by 谷歌翻译
人工智能研究中的一个新兴主题是创建模型,以模拟特定人员的决策和行为,包括游戏玩法,文本生成和艺术表达。这些模型以对个人的量身定制的方式以及为互动而不是简单地繁殖固定的预计行为的复制方式而超越了早期的方法。我们将这些称为模拟模型,在本文中,我们开发了一个框架,以表征其日益增长的可用性所带来的道德和社会问题。我们的框架包括用于使用此类模型的许多不同方案,并考虑了对一系列不同参与者的影响,包括正在建模的目标,部署模型的操作员以及与之交互的实体。
translated by 谷歌翻译
我们开发了一种新的原则性算法,用于估计培训数据点对深度学习模型的行为的贡献,例如它做出的特定预测。我们的算法估计了AME,该数量量衡量了将数据点添加到训练数据子集中的预期(平均)边际效应,并从给定的分布中采样。当从均匀分布中采样子集时,AME将还原为众所周知的Shapley值。我们的方法受因果推断和随机实验的启发:我们采样了训练数据的不同子集以训练多个子模型,并评估每个子模型的行为。然后,我们使用套索回归来基于子集组成共同估计每个数据点的AME。在稀疏假设($ k \ ll n $数据点具有较大的AME)下,我们的估计器仅需要$ O(k \ log n)$随机的子模型培训,从而改善了最佳先前的Shapley值估算器。
translated by 谷歌翻译
在人类可能希望从这些系统中学习,与它们合作或作为合作伙伴互动的情况下,可以捕获类似人类行为的AI系统越来越有用。为了开发以人为导向的AI系统,预测人类行为(而不是预测最佳行动)的问题受到了广泛关注。现有的工作集中在总体意义上捕获人类行为,这可能会限制任何特定个人可以从与这些系统互动中获得的收益。我们通过开发国际象棋中人类行为的高度准确的预测模型来扩展这一工作。国际象棋是探索人类互动的一个丰富领域,因为它结合了一套独特的属性:AI系统在多年前实现了超人类的表现,但人类仍然与他们以及对手和准备工具紧密互动,并且有一种关于单个玩家游戏的大量记录数据。从迈亚(Maia)开始,该版本的Alphazero经过了对人类人群的培训,我们证明我们可以通过应用一系列微调方法来显着提高特定玩家的举动的预测准确性。此外,我们的个性化模型可用于执行风格测定法 - 预测谁采取了一组给定的动作 - 表明他们在个人层面上捕获了人类的决策。我们的工作展示了一种使AI系统更好地与个人行为保持一致的方法,这可能会导致人类互动的大量改善。
translated by 谷歌翻译
Object instance segmentation is a key challenge for indoor robots navigating cluttered environments with many small objects. Limitations in 3D sensing capabilities often make it difficult to detect every possible object. While deep learning approaches may be effective for this problem, manually annotating 3D data for supervised learning is time-consuming. In this work, we explore zero-shot instance segmentation (ZSIS) from RGB-D data to identify unseen objects in a semantic category-agnostic manner. We introduce a zero-shot split for Tabletop Objects Dataset (TOD-Z) to enable this study and present a method that uses annotated objects to learn the ``objectness'' of pixels and generalize to unseen object categories in cluttered indoor environments. Our method, SupeRGB-D, groups pixels into small patches based on geometric cues and learns to merge the patches in a deep agglomerative clustering fashion. SupeRGB-D outperforms existing baselines on unseen objects while achieving similar performance on seen objects. Additionally, it is extremely lightweight (0.4 MB memory requirement) and suitable for mobile and robotic applications. The dataset split and code will be made publicly available upon acceptance.
translated by 谷歌翻译
Modern telecom systems are monitored with performance and system logs from multiple application layers and components. Detecting anomalous events from these logs is key to identify security breaches, resource over-utilization, critical/fatal errors, etc. Current supervised log anomaly detection frameworks tend to perform poorly on new types or signatures of anomalies with few or unseen samples in the training data. In this work, we propose a meta-learning-based log anomaly detection framework (LogAnMeta) for detecting anomalies from sequence of log events with few samples. LoganMeta train a hybrid few-shot classifier in an episodic manner. The experimental results demonstrate the efficacy of our proposed method
translated by 谷歌翻译
Opinion mining is the branch of computation that deals with opinions, appraisals, attitudes, and emotions of people and their different aspects. This field has attracted substantial research interest in recent years. Aspect-level (called aspect-based opinion mining) is often desired in practical applications as it provides detailed opinions or sentiments about different aspects of entities and entities themselves, which are usually required for action. Aspect extraction and entity extraction are thus two core tasks of aspect-based opinion mining. his paper has presented a framework of aspect-based opinion mining based on the concept of transfer learning. on real-world customer reviews available on the Amazon website. The model has yielded quite satisfactory results in its task of aspect-based opinion mining.
translated by 谷歌翻译
Individual-level data (microdata) that characterizes a population, is essential for studying many real-world problems. However, acquiring such data is not straightforward due to cost and privacy constraints, and access is often limited to aggregated data (macro data) sources. In this study, we examine synthetic data generation as a tool to extrapolate difficult-to-obtain high-resolution data by combining information from multiple easier-to-obtain lower-resolution data sources. In particular, we introduce a framework that uses a combination of univariate and multivariate frequency tables from a given target geographical location in combination with frequency tables from other auxiliary locations to generate synthetic microdata for individuals in the target location. Our method combines the estimation of a dependency graph and conditional probabilities from the target location with the use of a Gaussian copula to leverage the available information from the auxiliary locations. We perform extensive testing on two real-world datasets and demonstrate that our approach outperforms prior approaches in preserving the overall dependency structure of the data while also satisfying the constraints defined on the different variables.
translated by 谷歌翻译
The foundation models have recently shown excellent performance on a variety of downstream tasks in computer vision. However, most existing vision foundation models simply focus on image-level pretraining and adpation, which are limited for dynamic and complex video-level understanding tasks. To fill the gap, we present general video foundation models, InternVideo, by taking advantage of both generative and discriminative self-supervised video learning. Specifically, InternVideo efficiently explores masked video modeling and video-language contrastive learning as the pretraining objectives, and selectively coordinates video representations of these two complementary frameworks in a learnable manner to boost various video applications. Without bells and whistles, InternVideo achieves state-of-the-art performance on 39 video datasets from extensive tasks including video action recognition/detection, video-language alignment, and open-world video applications. Especially, our methods can obtain 91.1% and 77.2% top-1 accuracy on the challenging Kinetics-400 and Something-Something V2 benchmarks, respectively. All of these results effectively show the generality of our InternVideo for video understanding. The code will be released at https://github.com/OpenGVLab/InternVideo .
translated by 谷歌翻译
The standard closed-set domain adaptation approaches seek to mitigate distribution discrepancies between two domains under the constraint of both sharing identical label sets. However, in realistic scenarios, finding an optimal source domain with identical label space is a challenging task. Partial domain adaptation alleviates this problem of procuring a labeled dataset with identical label space assumptions and addresses a more practical scenario where the source label set subsumes the target label set. This, however, presents a few additional obstacles during adaptation. Samples with categories private to the source domain thwart relevant knowledge transfer and degrade model performance. In this work, we try to address these issues by coupling variational information and adversarial learning with a pseudo-labeling technique to enforce class distribution alignment and minimize the transfer of superfluous information from the source samples. The experimental findings in numerous cross-domain classification tasks demonstrate that the proposed technique delivers superior and comparable accuracy to existing methods.
translated by 谷歌翻译